Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(8): e0273240, 2022.
Article in English | MEDLINE | ID: mdl-36001606

ABSTRACT

In this study, the performance of bench-scale EDR was evaluated using the samples taken from the 1st and the 2nd stage RO from the Brackish Water Reverse Osmosis (BWRO) plant in Eshtehard, Iran. The measurements indicated that original TDS of the aquifer brackish water was equal to 3,229-3,664 mg/L, whereas TDS of the 1st stage RO brine was between 5,500 and 7,700 mg/L, that TDS of the 2nd stage RO brine was in the range of 9,500-10,600 mg/L. A batch bench-scale EDR system of 12 l/h was used with a direct electric current at three different scenarios. In the first, the brine was fed at 20°C (as a reference regulated point). In the second, temperature (14, 20, 26.5°C), and in the third, voltage were changed (6, 12, 18, 24 V) to investigate their influences on performance of the EDR process, while the other operational parameters (feed flow rate, recovery ratio, quality of feed brine)were kept constant. Based on the data analysis using the ANOVA and DUNCAN tests for the second and third scenarios, it was observed that the optimum TDS removal efficiency of the EDR process can be at temperature of 26.5°C and voltage of 18 V. On the other hand, the successful performance of the bench-scale EDR in reducing the 29,000 mg/L TDS and the 45,000 µmhos/cm EC of the 2nd stage brine to 1,716 mg/L (TDS) and 2,640 µmhos/cm (EC) (at 26.5°C and 24V) could be considered as the main achievement of this research. Overall, the hybrid process RO-EDR-RO can be considered as the best technical, environmental and economical scenario for the development of Eshtehard Desalination Plant phase 2 at full scale.


Subject(s)
Water Purification , Filtration , Membranes, Artificial , Osmosis , Renal Dialysis , Salts
2.
J Environ Health Sci Eng ; 19(1): 1005-1013, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150288

ABSTRACT

Groundwater is a viable alternative when access to surface water resources is limited. Iron and manganese are known ions in soil and naturally in groundwater sources. However, human activities also are responsible. To identifying the best module for removing manganese and iron in the water treatment plant (WTP) of Mazandaran, 516 samples were taken from raw and treated water. The concentration of manganese, iron, was measured by atomic absorption spectrophotometry, and turbidity was used with the nephelometry method. The water pollution index (WPI) was applied for categorizing the status of pollution in treated water. The effect of seasonal temperature and backwashing (At flow rates of 3.5, 9.2, and 15.3 m h-1) on the sand filter efficiency was also investigated. The highest concentrations of manganese, iron, and turbidity in raw water were 0.744, 6.70 mg L-1, and 41.8 NTU, and in treated water were 0.67, 1.09 mg L-1, and 5.58 NTU, respectively. The mean concentration of manganese and iron in raw and treated water were 0.24 ± 0.1, 0.93 ± 0.91, 0.105 ± 0.06 and 0.18 ± 0.14 mg L-1 respectively. The WPI statuses in drinking water were excellent for manganese and iron in 95.74 and 53.88 % of the samples and very poor in 1.16 and 12.01 % of the samples, respectively, and its classification for drinking water for manganese and iron was excellent ˃ good ˃ extremely polluted ˃ polluted and the concentration of iron was more than manganese in treated water. The study of temperature's effect on sand filters showed that the removal efficiency in warm seasons was higher than in cold seasons. Also, the turbulence in the backwash with the 9.2 m h- 1 rates, is lesser than other speeds, and in this flow, after 270 s, the turbidity decreases to less than 10 NTU. Spearman correlation comparison showed that the parameters amounts after filtration decreased significantly (p ≤ 0.0001) in comparison to raw water. The results showed that module #1 that used open-aeration and chlorine as oxidations, was most effective in removing iron and manganese. In the end, the WTP couldn't diminish the parameters completely and need subsidiary units.

SELECTION OF CITATIONS
SEARCH DETAIL
...